top of page
Banner_Paypal.jpg

Cantron Capsules 180 Caps

$99.00
1
Product Details

Now, for the first time ever, CANTRONĀ® is AVAILABLE in CAPSULE FORM!!! Our patents-pending freeze-dried process makes encapsulation of the authentic product possible. All active ingredients are retained.

At last, it is no longer necessary to take the unpleasant tasting liquid or deal with messy staining of teeth, clothing and carpeting as experienced with prior versions and variations such as EntelevĀ®, CancellĀ® or ProtocelĀ®.

CantronĀ® is an amazing bio-electrical wellness formulation. It provides astonishing health benefits like no other substance on Earth. It is the worldā€™s most potent antioxidant and scavenger of abnormal proteins which accumulate in the blood, tissues, organs and joints. Cantron is known to dramatically aid the bodyā€™s own natural defenses and helps it to reverse even the most severe health conditions. Since 1984, it has received rave reviews from those who have taken it. One customer summed it up perfectly on an Internet chat site when she emphatically stated: ā€œHow blessed we are to know about Cantron.ā€

More importantly, eight years of scientific research has lead to the new, improved, more potent ā€˜Advanced Scientific Version.ā€™ It is significantly better than all previous versions of CantronĀ® as well as the older and obsolete formulations such as EntelevĀ®, CancellĀ®, and ProtocelĀ®. A new antioxidant study and our internal in-vitro cell line studies show that CantronĀ® ASV has vastly superior potency than all previous versions and variations.

HOW DOES CANTRONĀ® WORK?

A LAYMANā€™S EXPLANATION

This explanation is indeed for the laymen. There are generalizations and simplifications of very complex material. Professionals in the fields of medicine and biochemistry may feel the need for more detail. Such detail is presented in other writings. This paper is intended as only a general overview for those without technical backgrounds.

CELLULAR RESPIRATION

An understanding of Cantron requires a basic understanding of the respiratory system of the human cell. Most people think of respiration as breathing, taking oxygen into the body and letting out carbon dioxide through the lungs. However, every living cell in the body is technically involved in respiration, because the word means more than simply breathing. Respiration is a chemical reaction in the cell which involves oxygen and which provides energy for the cell. The respiration system in the cell has the job of manufacturing and delivering energy in the cell so that the various functions of the cell can be carried out. (For example, muscle cells need energy to contract and all cells need energy to grow and divide.) Thus, respiration has the more general meaning of providing energy through the respiration systems of the cell.

OXIDATION-REDUCTION

One of the most important parts of the respiratory system in the cell is called the ā€œoxidation-reduction system.ā€ Indeed, in many respects, referring to the oxidation-reduction system of the cell is much the same as referring to the respiration system. This is because in the cell the oxidation-reduction system produces energy for the cell to do its work. Scientists sometimes refer to the oxidation-reduction system as the ā€œRedox system.ā€

The oxidation-reduction system can be thought of as a ladder, with a different chemical reaction taking place on each step. The respiratory reaction, which takes place on each step of this ladder is the same as on every other step in what it produces (i.e. energy for the cell to do its work), but each is also different from every other step in the sense of how effective the reaction is.

The bottom steps of the ladder involve relatively simple or ā€œprimitiveā€ respiratory reactions. An example of a primitive reaction would be yeast while it is fermenting. Keep in mind that this is still an amazingly complex reaction. It is only ā€œsimpleā€ or ā€œprimitiveā€ compared to the other reactions in the oxidation-reduction system.

The higher steps involve more complex respiratory reactions. The primitive reactions at the bottom of the ladder take place without oxygen being present. The higher respiratory reactions require the presence of oxygen. Generally, for ā€œreductionā€ you are moving down the ladder. For ā€œoxidationā€ you are moving up the ladder,

Each ā€œstepā€ on this ladder has a different ā€œpotential.ā€ ā€œPotentialā€ means a measurable electrical voltage, like a small battery would have. Primitive yeast cells which are fermenting will give off a certain amount of electrical energy i.e. movement of electrons. (We are talking about very small amounts of electrical energy.) As you move up toward the top of the ladder you will get increased potential energy. Thus, the potential electrical energy at the top of the ladder is greater than at the bottom. The top of the ladder has a potential of about +0.4 volts while the bottom is about -0.2 volts.

ENZYMES REGULATE CELLULAR RESPIRATION

Enzymes are involved in each of the steps of the respiratory ladder. Indeed, part ofā€™ the oxidation-reduction system within each cell is an enzyme system. In every living cell there are many different enzymes. Some of these enzymes are related primarily to the respiration system of the cell. Without these enzymes the respiration system could not function and the cell would have no energy to do its work.

Enzymes are a group of chemical compounds, which help chemical reactions take place. For example, an enzyme may make the reaction possible or may speed up a reaction which otherwise might require a great deal of time. Respiration is one chemical reaction that enzymes help. Even in the lungs, where most of us think respiration takes place, enzymes help make the oxygen usable for the body.

Each step on the oxidation-reduction ladder has a different enzyme from every other step. While certain of these enzymes are very similar to others in structure, they are still different enough to involve them in a different position on the ladder of respiratory reactions.

The major distinction between the primitive (i.e. bottom) respiratory reactions and the advanced (i.e. higher) respiratory reactions is that the primitive reactions do not use oxygen, while the advanced reactions do, Thus, in respiratory reactions below this dividing line (i.e. in the primitive part of the system) the movement of electrons does not rely on the presence of oxygen, while generally the movement of electrons in reactions above this dividing line on the ladder do require oxygen. (NOTE: there are a few situations above this line where oxygen is not used. However, they are not sufficiently significant to affect this level of explanation.

We refer to the advanced reactions, which use oxygen as ā€œaerobicā€ and the primitive reactions which do not use oxygen, as ā€œanaerobicā€.

When cells are working they are using a certain amount of energy. That energy is produced as a result of chemical reactions in the respiratory system at all the steps of the aerobic portion of the ladder at the same time. These reactions can be thought of as a system in that they are all related to each other. As energy is being used in a normal cell, the respiratory system is not only providing the energy used, but also replacing the energy held in reserve,

One might think of the chemical reactions like the electrical system in an automobile. The battery provides the spark to run the engine. The engine provides the power to drive the generator. The generator recharges the battery so it, in turn, can continue to provide the spark to the engine. If all is working well, and the system is in balance, the battery will have power to supply the engine for a very long time. Likewise in the cell, if all is working well the respiratory system is in balance. As energy is drawn off by work, the cell will ā€œgenerateā€ new energy so that more is available. The balancing will insure that a constant supply of energy is available for work.

In an automobile engine a serious problem can develop, if there is a long term, extraordinary drain on the power. For example, if a short develops or some one leaves the head lights on without the engine running (which would normally run the generator and resupply the battery). In these situations, there is a drain of energy and eventually the system will fail. Usually, this means that the battery goes dead.

In the cell there can also be a long term, extraordinary drain of power.

If this were a short term drain of energy, the cell could easily recover. For example, a muscle cell may get tired if you try to hold a weight over your head for a long time. If you put the weight down, the cell will recover nicely. If the extraordinary workload on the cell continues, despite its being tired, respiration will continue, but the ā€œbalanceā€ of the respiratory system will eventually be affected. The unending continuation of such a workload is called a ā€œchronicā€ situation. The individual cell has no way of shutting itself down to rest. It still keeps working, but the point of ā€œbalanceā€ will continually be at an ever lower oxidation-reduction level, as long as the excess work load continues.

One example of a chronic condition is cigarette smoking. Cigarette smoke in the lungs is an irritant in which the cells in the lungs are constantly working to overcome. As they continue to try to keep up the extra work caused by the smoke, the delicate balance of the respiratory system to the lung cells is altered and effectively moves continually lower on the respiratory ladder.

THE CRITICAL POINT

The cellā€™s movement down the ladder slowly continues until it hits what might be called a ā€œcritical point.ā€ The ā€œcritical pointā€ is when the cell is about 85% of the way down from the top of the ladder. (Obviously, it is likewise about 15% up from the bottom). The reason this is a critical point is that, for some reason, the cell does not fall any further down the ladder, and remains ā€œin balance.ā€

This ā€œcritical pointā€ is significant for three other reasons. First, this is the lowest the cell can go on the respiratory ladder and still have significant similarities to a normal cell. However, it is also on one of the highest rungs of the ladder it could be on and still be able to be in the primitive zone. Second, just as the cell had been ā€œin balanceā€ when it was working normally in the aerobic part of the respiratory ladder this is the point at which the cell reaches a new point of ā€œbalance.ā€ It ā€œlikesā€ it there; it is and will never move back to its old, normal balance in the respiratory system. Third, this is the stage at which the cell is now a cancer.

WHAT TO DO?

Once the cell is at this critical point, i.e. it is cancerous, the question becomes: What to do about it? The first thought is to simply ā€œpushā€ the cell back up the ladder, much as one would recharge a nearly dead battery. In theory this should work as a cure for cancer. However, all efforts to date have failed. The chemicals thus far used to push the cells back up the respiratory ladder are very toxic. Therefore, those who have tried this method have caused almost as many problems in side effects as they have solved. It has not been a satisfactory solution. The second thought might be to remove the bad cells, much as one removes broken parts from a machine. In the context of cancer this is a polite way of saying we are going to kill the bad cells.

Currently, the three methods used to kill cancer cells have severe drawbacks. Chemotherapy (i.e. chemicals that kill cells) is not only toxic to cancerous cells it is also toxic to healthy cells. Thus, it causes the extreme side effects with which we are all familiar. Indeed, chemotherapy is so toxic to healthy cells it could kill you itself if it were not for the cancer doing the job first. Radiation (i.e. such as X-Ā¬rays that kill cells) has much the same draw backs as chemotherapy. An X-ray does not know the difference between healthy and sick tissue and can cause very undesirable side effects. Surgery (i.e. killing the cells by cutting them out; can never guarantee that they ā€œgot it all,ā€ Indeed, on occasion, surgery will end up speeding the spread of the cancerous cells to other parts of the body.

Cantron takes a fourth approach. It was designed to take advantage of the fact that the cancer cell sits on the ā€œcritical pointā€ of the ladder. Once again this ā€œcritical pointā€ is where a cell turns cancerous, and is right on the boundary, the dividing line between primitive cells and normal cells. (Normal cells, sometimes called ā€œdifferentiated cells, are cells which have all their functions and can do all their normal work, such as grow and divide or, for a muscle cell, contract). Healthy cells are at a ā€œsteady state.ā€ They are constantly working, with much of their activity using energy. But, they are also effectively ā€œrechargingā€ themselves all the time. Thus, if you measured the potential of a normal cell (like you measure the potential of a car battery with a properly functioning regulator) it would remain substantially constant. Unfortunately, as mentioned earlier, cancer cells are also at a ā€œsteady state.ā€ Once pushed down to that critical point, the cell ā€œlikesā€ it there and wants to stay in that new steady state at the 15% point on the oxidation-reduction ladder.

The real problem with having a cell in the steady state at the critical point is that the body does not know how to deal with it. If the cell were still healthy, it would know how to ā€œrechargeā€ itself. If the cell were further down the oxidation-reduction ladder the body would know how to get rid of it through natural processes.

Somewhat like jumping a fence, you are fine if you stay on your side and you are fine if you make it all the way over the fence. But, you are in real trouble if you land so you are straddling the fence! The cancer cell ā€œstraddlesā€ the fence. It is neither normal enough nor primitive enough for the body to deal with in an adequate fashion.

THEORY OF OPERATION

The theory behind Cantron is to push the cell further down the oxidation-reduction ladder so it is fully and completely into the primitive stage of the oxidation-reduction system. Here, the body can deal with the cancer cell on its own. Cancer cells are often referred to as ā€œprimitive cells.ā€ They are indeed primitive because oxygen is not used in the respiratory system of the cancer cell. Again, however, while they are true primitive cells in that sense, they constitute the boundary line between primitive and normal. It would take a relatively small step up the ladder for them to be normal again or a relatively small step down the ladder for them to be completely primitive so that the body could deal with them as primitive cells. Thus, even though they are primitive cells they ā€œlookā€ normal and ā€œactā€ normal in certain respects.

Cantron tries to take away the last vestiges of normality, pushing them down the oxidation-reduction ladder so they are no longer on me boundary line. Once the cancer cell is definitely into the primitive stage, the body deals with it as the body does any other foreign object. It gets rid of it. But how?

A primitive cell is different than a normal cell in the way it functions. It cannot exist like other cells in the body. It becomes alien tissue, as it were ā€œincompatibleā€ non-functioning in the normal sense. It ceases to be cancer and it ceases to be normal. The body cannot tolerate it and rejects it. Much like trying to graft a piece of wood on your finger, the body will not allow it. The primitive cells are attacked by the body in different ways, depending on where they are in the body. In some places (like the brain) the body forms a crust-like membrane around the primitive cells. There will be the ā€˜tumorā€™ but it is dead and enclosed. In other places (skin cancer) the body effectively digests it in a process called ā€œlysisā€ or simply sloughs it off like a dried out scab.

HOW DOES CANTRON WORK?

The next question is: How does Cantron cause the cell to shift from its stable state at the critical point deeper into the primitive state? The process of moving down the oxidation-reduction ladder is the process of chemical ā€œreduction,ā€ which is the opposite of oxidation, the moving up on the ladder.

There are chemicals that inhibit respiration. One example is a group of chemicals called catechols. Catechols are common in nature. In fact the chemical that makes cranberries red is a catechol. The inhibition of the respiration of a cancer cell will push it off its stable state and completely into the primitive state. Obviously, if a chemical is taken into the body which inhibits the respiration of the cancer cell it will, likewise, inhibit the respiration ability of every other cell it acts on. (Just as the sugar molecules from a candy bar will affect every cell they contact). Normal cells, it will be recalled, are working well within their potential to do work. They are working near the top of the oxidation-Ā¬reduction ladder, because the cell works most effectively there.

Since normal cells work at such a high level of the oxidation-reduction system, if their respiration potential is reduced somewhat, it is no real problem for them. Cancer cells, however, are at that critical point, right on the dividing line between normal and primitive. If their respiration ability is reduced, they will be pushed completely into the primitive state. The inhibition of the respiratory system is done by shunting off ā€œenergy unitsā€ of the cell as it is working so the energy is not going through the respiratory system. (An ā€œenergy unitā€ is two electrons and a proton). Thus, work is being done by the cell, but not respiration. But, again, respiration is the process by which the cell manufactures and delivers energy to the various parts of the cell so that the cell can function. If work is being done, but not respiration, the cell is forced further down the oxidation-reduction ladder. Thus, once respiration is reduced, the cell is forced down completely into the primitive state.

One of the chemicals which reduce respiration is catechol. The natural catechols have many different oxidation-reduction potentials (i.e. the level on the oxidation-reduction ladder where the particular catechol will work or operate.) The trick is to find one that works at the same level as a cancer cell, i.e. at that ā€œcritical pointā€ level.

Cantron was developed to act like a catechol, i.e. to inhibit respiration at the critical point. Cantronā€™s entire chemical structure was designed to inhibit respiration of cells at the ā€œcritical pointā€, i.e. cancerous cells, and, thus force cancer cells further into the primitive stage where the body will attack and dispose of them naturally.

TYPICAL QUESTIONS ASKED ABOUT CANTRON

1) What cancers does Cantron effect?

Generally, Cantron works on all forms of cancer. Very good reports have been received regarding brain, breast, bone, pancreatic, esophageal, stomach, and lung tumors as well as non-Hodgkins lymphomas. The success rate for Cantron is not perfect. Depending on the type of cancer it generally runs about 50% to 80% successful. For many forms of cancer Cantronā€™s success rate is far superior to any other therapy now in use.

One notable exception is in Leukemia, especially when the patient is a child. Poor results have been reported. (Again note, this is consistent with the NCI in vitro screening which is shown among the cancers tested.) The reason for this failure rate, especially among children, is unclear. The general problem with leukemia may relate to the nature of the disease itself. With children the problems may be associated with the metabolism of children, the workload associated with their growth patterns or any number of other factors.

2) What are the side effects of Cantron?

Cantron has been used by over 40,000 human beings. There have also been experiments involving in excess of 20,000 mice (mostly white mice or standard laboratory mice along with a few nude mice. Nude mice derive their name from the fact they have no hair. Their significance is they also have no immune system and are, therefore, extremely vulnerable to toxic foreign substances.) Some of the mouse work has been specifically aimed at determining toxicity levels. NO significant toxic side effects of Cantron have been found to date. This is true in both large doses and over long periods of time. Keep in mind that almost ALL substances are toxic at extreme levels. When taken at normal doses Cantron appears to be less toxic than an occasional aspirin. The only adverse reaction reported to date involved a person who totally misunderstood the instructions and drank an entire pint of Cantron concentrate (i.e. about a three month supply) in one dose resulting in a bad case of diarrhea for several hours. The individual reported being fine the next day.

3) Is any special diet necessary while taking Cantron?

No special diet is required. If one were to think in terms of the kind of diet your grandmother would recommend or the diet the Federal Government suggests, you have a fine base for taking Cantron. In other words the diet should include foods from all the basic food groups, including vegetables, fruits, breads and meats. A balanced diet requires animal protein, which differs in its chemical make up from the protein in plants. This can be in the form of fish, fowl or red meats or such by-products as milk, cheese or eggs.

However, do NOT take mega doses of vitamins C and E while taking Cantron. The chemical make up of these two vitamins shifts the point on the oxidation-reduction ladder where Cantron works. Since Cantron was designed to hit hardest at the ā€œcritical pointā€ i.e. cancer cells, any shift will reduce the effectiveness of Cantron. This does NOT mean to completely cut out vitamins C and E. The amounts of C and E contained in the standard multivitamin, which can be purchased at any drug store, are fine. Likewise the C and E which exist in a traditional ā€œwell-rounded dietā€ (such as the vitamin C in orange juice) will not adversely affect Cantron. It is only the extraordinary doses of C and E that must not be taken.

4) How much time is required on Cantron before results can be expected?

The length of time required before seeing results varies greatly from one patient to another. Such factors as the type of cancer, how far the cancer has progressed, the age of the patient, and the patientā€™s general health (other than the cancer) can all play a role in determining the speed with which Cantron operates. Many people report noticeable results in 3 to 5 weeks. By 7 to 9 weeks most people see results; however, some cases have taken up to 3 months. This may seem awfully slow. However, it must be kept in mind that Cantron is effectively ā€œaskingā€ the body to ā€œcure itself.ā€ Cantron does not actually ā€œkillā€ the cancer cell in the usual meaning of the word ā€œkill.ā€ Instead, it alters the cell in a way that the body can dispose of the cancer through such normal means as Iysis. The process of altering the cancer cells and having the body dispose of them naturally is time consuming.

5) How does Cantron interact with standard therapies like surgery, chemotherapy, and radiation?

Chemotherapy can bring the percentage of success down, because chemotherapy changes the level on the oxidation-reduction ladder where Cantron works. Since Cantron was designed to hit a particular target, i.e. the ā€œcritical pointā€ where cancer is located, any change will decrease the effectiveness of Cantron. Furthermore, chemotherapy is, as has already been pointed out, extremely toxic. This creates problems for the healthy cells in the body and one more difficulty for the body to overcome.

Radiation has not produced the marked drop in the percentage of success that chemotherapy causes. While no explanation for this is apparent it seems that radiation does not have quite the same effect on how Cantron acts on the oxidation-reduction ladder as does chemotherapy. Surgery appears to have no real adverse effect on the ability of Cantron to work on cancerous cells. The only problem with surgery is that any time the body suffers a major wound, it is asked to perform a substantial amount of work to recover.

However, having said all this, it is Imperative to keep one thought firmly in mind! Cantron takes time to work. As I noted above 7 to 9 weeks is typical and some cases take up to 3 months to see a response. If a patient has only a few days or weeks to live, Cantron may not have time to be effective. In such cases the object is to buy time. If chemotherapy will give the patient an extra month or two, by all means it should be taken. These precious weeks can then be used to give Cantron a chance to work. Granted, the use of the chemotherapy may reduce the effectiveness of Cantron, but it is far better to reduce its effectiveness than suffer certain death!

6) What If the doctor wants the patient to go back on chemotherapy after the Cantron seems to be working?

There is a tendency on the part of physicians to want to press patients who are doing well on Cantron to take chemotherapy again to ā€œkill off the last of the cancer.ā€ This decision belongs to the patient. One question should be asked about chemotherapy, however: Should a material, known to be toxic, be taken into the body unless extreme emergency conditions are faced. As mentioned above, chemotherapy has a use where there is no time left for a non-toxic material.

Share this product with your friends
Cantron Capsules 180 Caps

Adress

Pure Blood Supplements

265 S Federal Highway, Suite 322

Deerfield beach, FL 33441

Email 

Follow

Accepted Payment Methods

  • Facebook
  • Instagram
Icons_pay.png

Ā©2023 por Pure Blood Supplements. Orgulhosamente criado com Wix.com

bottom of page